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Summary. A direct configuration interaction (CI) scheme using the generalized 
double symbolism both for the external space and for the internal space is 
proposed in an integral-driven context. The reason why the double symbolism is 
used in the present formulation is that the main target is in investigating large 
molecular systems. The integrals, configuration state functions, and energy expres- 
sions are systematically classified in terms of the orbital labels and their mutual 
relations. Various types of CI wavefunctions can be set up flexibly. The resulting 
structure of integral processings in the sigma vector construction is complicated. 
The number of unique loop types for two-electron integrals is 1325. Because the 
parallel architecture is gaining importance in the recent computational platforms, 
the parallelism is also addressed. 
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1 Introduction 

In molecular orbital (MO) calculations, the configuration interaction (CI) method 
has demonstrated pronounced abilities to treat both the ground and excited states 
of molecular systems in balanced fashion. Unless otherwise specified, the abbre- 
viation "CI" will hereafter denote the multireference singly and doubly excited 
version, MRSDCI. The direct CI method that was originated by Roos and 
Siegbahn [1, 2] should be especially powerful to handle the long expansions. In the 
direct CI calculations, the so-called sigma vectors are constructed from the molec- 
ular integrals and the energy expressions directly in every iteration, where integral 
classifications are essential. Because of this feature, direct CI does not suffer from 
the storage and retrieval problems associated with the bulky Hamiltonian matrix 
elements that are, in contrast, explicitly constructed in the conventional CI scheme. 
Note that extensive developments of the direct CI methods have been summarized 
in several monographs (e.g. Refs. [3-6]). 

The majority of existing direct CI programs are based on group theories in 
which the internal MOs usually consist both of the active MOs that associate with 
the open shells or the reference sets to properly describe near-degeneracy effects 
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and of the internal MOs that are doubly occupied in the reference. The internal 
MOs are treated by the appropriate representation tableau arrays in the program 
codes, and only the external MO space (unoccupied in the reference) is treated 
symbolically. In the symbolic CI proposed by Liu and Yoshimine [7], too, only the 
external symbolism is used. This is because these methods are oriented toward 
quantitative calculations for the properties of relatively small molecules by incor- 
porating electron correlations that should be flexibly described by the large 
external space, Definitely, for small molecular systems, today's state-of-the-art 
direct CI calculations using extensive basis sets with higher polarization functions 
guarantee satisfactory "chemical accuracy". 

In this paper, we present the integral-driven direct CI formulation with a gener- 
alized double symbolism. The formulation is oriented toward the qualitative 
investigation of rather large molecular systems, such as biochemical molecules like 
drugs, photoactive-dyes and enzyme models, with the standard basis sets. It should 
be noted that the properties of such systems at the low-lying excited states have 
been left as fields to be further studied. For example, the chlorophyll dimer is 
known as the "antenna system" of photosynthesis in green plants, but the charac- 
teristics of its excited states, which are of crucial importance to photon capture, are 
not understood well. The number of active MOs is expected to be still small even 
for large molecules, but the internal space can be comparable to that of the external 
space. It is apparent that sizes of the tableau array for the internal space and 
numbers of externally symbolized expressions can become prohibitive and overly 
redundant when the internal space becomes large. Furthermore, the flexibility with 
which various types of CI wavefunctions can be constructed is restricted. These 
difficulties are overcome here by a new scheme in which the expressions are doubly 
symbolized for both the internal and external spaces. Multi-indexed quantities, 
such as the integrals and the configuration state functions (CSFs), are systemati- 
cally classified according to the MO indices and their relations. The present 
formulation is, of course, based on the extensive works published for the direct 
CI methods [3-6]. Especially, the key concept "symbolism" depends on Liu and 
Yoshimine's symbolic CI [7] and also on Saunders and van Lenthe's model-space 
CI [8]. The basic method for integral classifications owes itself to the pioneering 
works of Roos and Siegbahn [1, 2]. However, the present CI scheme extends those 
ideas much more exhaustively because it uses a generalized double symbolism. In 
fact, for integral processings in the sigma vector construction, the number of unique 
loop types having respective addressing scheme turns out to be more than thou- 
sand. We should describe in detail the handling of symbolic expressions and the 
control of integral-driven sigma vector loops. 

Recently, the parallelization of calculations has been recognized as a promising way 
to achieve high performance. Most of the current supercomputers are based on the 
parallel architecture and the workstations (WSs) can now be used in the cluster form 
through the networks. Thus, we address the parallel applicability. The present formula- 
tion is found to be straightforwardly parallelizable due to the integral-driven nature. 

2 Direct CI with generalized doubly symbolic energy expressions 

2.1 Classification of orbital space 

First, the orbital classification should be made explicitly. In the present paper, the 
whole MO space is divided into five subspaces: 
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1. Frozen core: always kept doubly occupied or not correlated. 
2. Internal: doubly occupied in the reference configurations. 
3. Active: used to describe the reference configurations. 
4. External: unoccupied in the reference configurations. 
5. Frozen external: always kept unoccupied. 
Thus, the correlating orbital space consists of the internals, actives, and externals, 
as mentioned in Sect. 1. The MO labels for these three subspaces are assigned to be 
{i,j, ... } for the internals, {x, y, ... } for the actives, and {a, b, ... } for the ex- 
ternals. Note that {p, q, ... } are used as generic indices. The two frozen subspaces 
need not be concerned with the CI calculation, except for the energy contributions 
from the frozen core MOs through the effective Fock operators (refer to Sects. 2.3 
and 2.4). Further classification according to molecular symmetry is not used 
in the present paper (although it is potentially applicable) because the sym- 
metry of most large systems, especially for biochemical molecules, is C1 or "no- 
symmetry". 

2.2 Doubly symbolic CSF set 

The CI wavefunctions are described just by the linear expansion of CSFs 

~(R) = E TI(R)7/I, (1) 
I 

where the CSF set { ~ui} consists of the reference CSFs, the singly excited CSFs, and 
the doubly excited CSFs. The CI vectors T are determined as the eigenvectors to 
diagonalize the Hamiltonian matrix and the energies are obtained as the eigen- 
values. The superscript R in Eq. (1) specifies the order of states or simply the CI 
vector number. A certain CSF is specified by the spatial orbital configuration 
and the spin couplings of associated open shells and is actually described by the 
properly grouped Slater determinants. Presently, the excitation is defined not by 
the spin orbital but by the spatial orbital. In other words, the spin flippings are not 
regarded as excitations. 

A certain orbital configuration is segmented into active orbital part C and the 
remaining parts of internal and external orbitals that are treated symbolically. Due 
to combinations of internal and external parts, the total 16 symbolic CSF types are 
defined as shown in Table 1, and the entire CSF set in Eq. (1) is classified by these 
doubly symbolic types. This table also contains the occupations in each MO 
subspace and other possible classifications such as the grand types and the 
excitation patterns. The grand types are distinguished according to how many 
electrons move among the subspaces. Caution must be taken, because the symbolic 
types 1-4 {qJo, ~i, ~Ja, ~Ji, a} (or the grand types 1-4 {~gtvl, ~g~Ii, Wtxl, ~[~xl})contain 
both singly and doubly excited patterns. For example, the qJo (or qJ[vl) consists of 
not only the reference CSFs but also the singly (x ~ y) and doubly (xy --* zw) 
excited CSFs associated with only the active MO subspace. The flexibility for 
setting up orbital configurations could be the most distinctive merit of the direct CI 
formulation proposed here. Note that the choice of the reference configurations is 
free or is not restricted to be the complete set within the active MOs. We would 
exemplify that the grand types {~Utvl, ~[ll, ~r-/tX], ~tnl, ~Ut~xl, htt[IlX]} are used in the 
polarization CI (POLCI) and the simpler MRSCI omits the double excitations 
from this set. 
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Table 1. CSF classifications 

Y. Mochizuki et al. 

No. Symbolic type ~ No. of electrons b Grand class Excitation pattern ~ 

1 7'o N m / N t A / O  7" m {Ref., x ~ y, x y  ~ zw}  
2 7"i N m - 1/NIA 1 + 1/0 7' m {i --* x, ix ~ yz}  
3 7"~ NIII/NtA j - 1/1 ~Utx I {x  ~ a, x y  ~ za} 

4 7"i,. N[I I  - -  1/NtA1/1 ~Pt~xl {i ~ a, ix --* ya}  

5 Ti 2 N m - 2/Ntg I + 2/0 7"fro {/j ~ xy}  
6 T~j 
7 7"2 Nm/N~A ~ - 2/2 7~txxl xy  ~ ab 
8 7".b 

9 7~?., N[I t  - -  2/NtAI + 1/1 ~ [ n x ]  ij ~ xa  
io 7",~.° 
11 7",.2 Nt~ 1 - 1/NtA 1 --  1/2 7"tlxxl ix ~ ab 
12 7"~,.b 
13 ~v?,2 Nm - 2IN,All  2 7"01xxl ij ~ ab 
14 7"?,.b 
15 Wo,.z 
16 7"~j,.b 

a The superscript of "2" for i and a in the CSF label indicates that there are two electrons in the orbital. 
The relation i > j is satisfied if label "ij" exists (similarly, a > b for the "ab" label) 
b Numbers of electrons for internals (Nm), aetives (Ntm), and externals 
c Excitation patterns are indicated in the symbolic manner 

Arbitrary schemes can be used for the spin coupling M for the open-shell parts 
of the given total orbital configuration, and this is the second merit of the present 
CI scheme. Namely, both the completely genealogical type and the restricted types 
are available [9]. The genealogical coupling scheme that is usually employed in 
gr0up-theory-based programs tends to make the CI length explosive, especially 
for the case that excited configurations have many open shells with low spins. 
However, for such a case, the first-order interacting space restriction is useful to 
dramatically reduce the total CI expansion length without a serious loss of energy 
[10, 11]. The present flexibility for spin couplings results from the fact that the 
energy expressions are evaluated by the simple determinant-based particle-hole 
(PH) method [12-14],  as will be discussed in Sect. 2.4. As a whole, both the various 
classifications of CSF types listed in Table I and the free spin coupling types enable 
the desired CI wavefuncfions to be set up even for large molecular systems. 

The CSF address in the vector is defined as follows. The canonical address is 
used for the indices of internal and external MOs, and the ternary numbers are 
used to sort the active configuration patterns for each symbolic CSF type. In the 
example case of five electrons in four active orbitals, the two patterns of"1112" and 
"2012" are respectively ternary-numbered by 41 and 59, where the active M O  index 
runs from right to left. The addressing for the most  complicated type 16 CSF, 
7ti~,ab(C,  M ) ,  is given by the form [2] 

~ ( C )  - -  1 + N M { N x p a i r [ ( i  - 1)(i -- 2)/2 + j  - 1] 

+ (a - 1)(a - 2)/2 + b - 1} + M, (2) 

where ~(C) is the starting address for the sorted active orbital configuration C, Nm 
is the number  of linearly independent spin couplings for the total orbital configura- 
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tion (/j)C(ab), and Nxpalr is the number of possible external orbital pairs. Running 
ranges for a and b are respectively (2, Next.) and (1, Next.- 1) with the condition of 
a > b. The internal MO indices i andj run similarly. The other symbolic CSF types 
can be addressed more simply. 

In this subsection, the entire CSF set in Eq. (1) has been segmented by 
introducing the 16 types of symbolic CSFs as 

1 6 (  ~r(R) ~ "~ 
@(=) = Z E "'<,..o," l'<,r,,o,J. (3) 

type I(type) 

As illustrated in Eq. (2), the second level of segmentation is apparently due to the 
active orbital configuration C. The segmentation due to C will be crucial in 
considering the present way of sigma vector construction with the doubly symbolic 
expressions. 

2.3 Hamiltonian matrix elements and classification o f  integrals 

The Hamiltonian matrix elements 

His = (~,]/}l ~s) (4) 

are constructed from the molecular integrals O and the coupling coefficients Q by 
the formal summation 

1t,, = Z oL 'Qi (51 
X 

The suffix X whose length depends on the I / J  pair runs over the non-zero 
contributions. Integrals O consist both of the one-electron integrals (OEIs) {hpq} 
and of the two-electron integrals (TEIs) {gpq,,=} (in the charge-cloud notation) and 
their contributions are specified by the pointer lists L. The quantities 

{L, Q} (6) 

correspond to the energy expressions that will be the central issue in the next 
subsection. 

The definition for the sigma vectors Z is written in matrix form as 

Z = HT.  (7) 

From Eq. (5), an integral contribution is accumulated directly to the sigma vector 
element for bra 7ti and ket ~s by the pair of arithmetic operations 

for bra: Z(I R) ,.- z~R) + OLf*QIxS * T(r R), (8) 

for ket: Z(fi ) ~ Z(fi ) + OL i, • Q1xl • T(I R). (9) 

The sigma vector construction is repeated until the iterative diagonalization 
procedure converges. Needless to say, the processings of Eqs. (8) and (9) completely 
dominate the whole CPU time as the kernel of direct CI calculations and should be 
performed in an efficient manner. One way of efficient processings can be based on 
the integral-driven context in which all possible I / J  pairs associated with the given 
integral are treated in a group. However, if one uses the integral-driven scheme, the 
integrals must be classified systematically, as originally pointed out by Roos and 
Siegbahn [1, 2]. 
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Prior to discussing the classifications, the order of the integrals should be 
addressed. Unless otherwise noted, the simple "integral" hereafter means the TEI, 
which is much more laborious to handle than is the OEI, and the processings 
associated with TEIs will be stressed. It is postulated here that the {gpq,r~} are 
canonically generated and ordered. The canonical indices have the generic form 

[pqrs] = [pq] ( [pq]  - 1)/2 + [rs],  (10) 

where the [pq] and [rs] are respectively given by 

[pq] = p(p  - 1)/2 + q, [rs] = r(r  - 1)/2 + s, (11) 

with the condition of 

[pq] >>. [rs], p >~ q, r >~ s. (12) 

In the above three equations, the square brackets are used to identify that the 
indices are packed. Note that the TEI list may be obtained by the standard 
transformation method from the atomic orbital (AO) integral list. In the direct 
CI programs with the external symbolism, reorderings for the canonical integral 
list are often carried out before the sigma vector construction starts. However, the 
special integral reordering is not considered here, because such a task can be 
demanding from the viewpoint of data management and retrieval, especially for the 
calculations of large molecular systems (alternatively, the symbolic energy expres- 
sions are reordered, as will be seen in the next subsection). Another reason for the 
avoidance of reorderings is that the sparsity of the integrals needs to be used. That 
is, only the contributing integrals within a certain threshold are stored on a file with 
some index lists and are processed in the sigma vector construction. This is referred 
to as "prescreening". In fact, as will be seen in Sect. 2.5, our integral-driven method 
feasibly incorporates the sparsity, and the number of arithmetic operations repre- 
sented by Eqs. (8) and (9) can effectively be reduced. 

Consider now the classifications of the integrals. Table 2 summarizes the 
numbers of types and subtypes, and the ordered contents, where the total number 
of subtypes is as many as 94 due to the double symbolism. The integral types are 
classified according to attributes of the index quartet, and the subtypes are 
distinguished by their mutual relations. All the subtypes are treated by different 
integral processing loops. For example, the gxi.yj and 9~,r~ integrals (type 5/sub- 
types 5 and 4, respectively) are processed separately. 

If the integrals are canonically stored on a file, the single record associated with 
the given pq pair generally contains various integrals due to the variations of rs. 
Table 3 illustrates an example cases in which pq is given by the external orbital pair 
ab. One finds the total 22 subtypes in this table. As seen in Table 3, if the integral 
has the active MO labels, this part specifies the supplementary "subaddress" 
besides the canonical address. The subaddress of the integral will play an essential 
role in treating the internally and externally symbolic expressions (refer to the next 
subsection). 

As already mentioned, the present paper uses the PH method [12-14] to obtain 
the doubly symbolic expressions. In the PH method, because any determinants or 
the resulting CSFs are described only by the "particles" and "holes" relative to the 
"vacuum determinant" that is not the physically empty state [13], the Hamiltonian 
matrix elements are given by the vacuum energy (responsible for only the diagonal 
elements) and the integral contributions are specified only by these particles and 
holes. In other words, the number of integrals that correlate with a certain HH or 
the length of suffix X in Eq. (5) can be reduced. This should therefore be profitable 
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Table 3. Contents of integral record in a case when pq is given by ab ~ 
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No. Integral (type/subtype) Index area(s) b Subaddress ~ 

1 9ab,~, (6/2) 
2 9,b.,,, (9/2) i: (1, Nint. ) 
3 a.b,.x (10/4) 
4 9,b.bx (10/5) 
5 g.b,c~ (10/6) c: (1, b - 1) 
6 g.c, bx (10/7) b: (c + 1, a - 1) 
7 g,b,u (13/2) i: (1, Nint.) 
8 g.b,O (13/4) i: (2, Ni.t.), j: (1, i - 1) 
9 g,b,,~ (14/4) i: (1, Nint. ) 

10 .q,b,bl (14/5) i: (1, Ni.t.) 
11 .q,b,~ (14/6) c: (1, b - 1) 
12 .q,c.bl (14/7) b: (c + 1, a -- 1) 
13 9,b,bb (15/5) 
14 .q,b, ab (15/6) 
15 g.b,~ (15/7) C: (1, b - 1) 
16 gac.bb (15/8) b: (c + 1, a -- 1) 
17 g,b,,~ (15/9) c: (1, b - 1) 
18 g.b,b~ (15/10) C: (1, b - 1) 
19 9.~,b~ (15/11) b: (c + 1, a - 1) 
20 ,q.b,~a (15/12) C: (2, b -- 1), d: (1, c - 1) 
21 g.~,b,~ (15/13) b: (c + 1, a - 1), d: (1, c - 1) 
22 .q.,~,b, (15/14) b: (d + 2, a - 1), c: (d + 1, b - 1) 

xy 
X 

X 

X 

X 

X 

a Actually, because of the prescreening, only the non-zero integrals (within a certain threshold) are 
stored with an appropriate index list 
b Possible running index area for the internal and external MO spaces. The paired numbers in 
parentheses indicate the bottom and top of the area 
c The subaddress is defined by packing only the active MO indices. See the caption for the type 
2 integral in Table 2 

for the  i n t e g r a l - d r i v e n  s igma  vec tor  cons t ruc t i on ,  especial ly for molecu les  h a v i n g  
a large i n t e r n a l  M O  space. Here,  the  modi f ied  O E I  e lements  of the  effective 
F o c k - t y p e  o p e r a t o r  a n d  the  v a c u u m  energy  are  g iven by  

V a e .  De t .  

fpq = h ,q  + ~ (29,q ,r ,  - 9,~,q~), (13) 
r 

Eva¢. = ~ (f~r + h~r), (14) 
r 

where  the  s u m m a t i o n  r u n s  over  all the  occup ied  orbi ta ls  in  the  v a c u u m  de te rmi -  
n a n t  of the  c losed-shel l  type. T h e  n u m b e r  of c losed shells is g iven by  the  in teger  
pa r t  of  ha l f  the  to ta l  n u m b e r  of e lec t rons  i n c l u d e d  in  the  ta rge t  m o l e c u l a r  system. 
The  ene rgy  c o n t r i b u t i o n s  f rom the  f rozen core M O s  (refer to Sect. 2.1) are i n c l u d e d  
t h r o u g h  Eqs.  (13) a n d  (14). O n c e  the  O E I s  h a v i n g  the  c a n o n i c a l  addresses  are  
genera ted ,  these  t w o - i n d e x e d  quan t i t i e s  are  m u c h  m o r e  s imply  classified t h a n  are  
those  in  the  f o u r - i n d e x e d  T E I  case. The re  are six O E I  types, a n d  the  to ta l  n u m b e r  
of sub types  is o n l y  eight. I n  s u m m a r y ,  the  O E I  t r e a t m e n t  is m u c h  easier  t h a n  the  
T E I  t r ea tmen t .  
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2.4 Doubly symbolic energy expression 

In the previous two subsections, the CSFs and the molecular integrals are classified 
according to the orbital classes and their relations. The energy expressions should 
therefore be classified consistently. As mentioned in Sect. 2.2, a certain CSF is 
characterized by the active orbital configuration C, the configuration pattern due 
to the internal and external orbitals that are treated symbolically, and the spin 
coupling M. Thus, for example, the actual Hamiltonian matrix elements for the 
interaction between type 16 CSFs may be represented as 

(16IBI16), j  = (7'~j, ab(c, M)I-OI ~k,,cd(C', M')), (15) 

where the elements are specified by a total of 12 indices (ten for the configuration 
part and two for the spin coupling part.) The minimum number of indices is four for 
the (1 [/~l 1) interaction in which there is (of course) no symbolism. The other CSF 
interactions fall into the intermediate cases. However, because the electron-elec- 
tron interaction is at most two-body in nature, common orbitals between the bra 
and ket must exist in the non-zero H elements. Presently, for the integral-driven 
sigma vector construction of Eqs. (8) and (9), the expressions should be handled 
with the internally and externally double symbolism and should therefore be 
structured carefully. This subsection discusses in detail a systematic method used 
to obtain such symbolic expressions as compact as possible and to determine the 
vector addressings for T and Z. 

First, we consider how to define the symbolic Hamiltonian matrix elements to 
be explicitly evaluated. Recall that all the configurations are characterized by the 
active orbital configuration, the maximal two internals, and the maximal two 
externals. In a certain matrix element, the combination of active orbital configura- 
tion C/C' is unique, where the number of electrons involved with each configura- 
tion need not be the same. Thus, we have to be concerned with the symbolic 
combination patterns of internal and/or external orbitals between the bra and ket. 
When the bra/ket pair of the symbolic CSF types is given, the internal and external 
orbital combinations in the matrix element are respectively classified by each of 
primary label types  (PLYs), according to the list in Table 4. Taking the 
(161/~[ 14) interaction of (~'j, ab(C, M)]/~] g~k~cd(C ', M')) as an example, the inter- 
nal PLT is I (for ij/k2), and the external PLT is J (for ab/cd). A more specific 
description, taking account of identities and inequalities between the individual 
indices, is characterized by the secondary  label types  (SLTs), separately for the 
internals and externals. The correspondences between PLT and $LT are listed in 
Table 5. Note that the PLT J has 13 cases of associated $LTs. Thus, any bra/ket 
configuration pairs to be evaluated within the symbolic H space are uniquely 
defined by using combination lists of the symbolic CSF type, PLT/SLT, and active 
orbital configuration. 

The setting up of the symbolic MO space is a simple matter. In the usual CI 
cases, four symbolic internals and also four symbolic externals are enough for 
constructing the symbolic H. The energy expressions for the symbolic matrix 
elements are obtained through the determinant-based PH technique that is based 
just on the second quantization formalism and the Slater rules. There are ten types 
of elementary expressions for the determinant pairs [14]. An integral address itself 
is determined by the character of the given symbolic orbital configuration pair, and 
only the non-zero combination of spin coupling M/M' is kept for the final coupling 
coefficients for this configuration pair. A pronounced advantage of the simple 
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Table 4. Primary label types (PLTs) 

Case Bra~et  label pai# 

A None, p/,/p, p2/,/p2, pq/,/pq 
B p/q 
C p/q2 

D p2/q 
E p/qr 
F pq/r 
G p2/q2 

H p2/qr 
I pq/r 2 

J pq/rs 

a Case values are separately assigned to the internal 
and external label parts of the symbolic matrix 
elements (see also the text) 

Table 5. Correspondences between primary label type (PLT) and secondary 
label type (SLT) 

Primary label type Index relation Secondary label type 

A 
B,G 

C,D 

E,H 

F,I 

None 0 
p = q, p2 = q2 1 
p > q, p2 > q2 2 
p < q, p2 < q2 3 

p = q2, p2 = q 1 
p > q 2 ,  p 2 > q  2 

p < q2 192 < q 3 

p = q ,  p 2 = q  1 
p = r, p2 = r 2 
p > q ,  p 2 > q  3 
q > p > r , q > p 2 > r  4 
q > r > p , q > r > p  2 5 

p = r , p = r  2 1 
q = r, q = r 2 2 
q > r , q > r  2 3 
p > r > q , p > r 2 > q  4 
r > p ,  r 2 > p  5 

( p = r , q = s )  1 
( p = r , q > s )  2 
( p = r , q < s )  3 
( p > r , q = s )  4 
( p < r , q = s )  5 
( p = s , q < r )  6 
( p > s , q = r )  7 
q > r  8 
p > r > q > s  9 
p > r > s > q  10 
p < s  11 
q < s < p < r  12 
( p < r , q > s )  13 
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Table 6. Positional pattern types  (PPTs) for 
an integral index t 

Case Bra/ket label pair a 

0 None 
1 t/t, tp/tq 
2 pt/qt 
3 t2/ t  2 

4 t/, tp/ 
5 It , / tp 
6 pt/ 
7 /pt 
8 t~/ 
9 / t  2 

10 pt/t, pt/tq 
11 t/pt, tp/qt 
12 t2/t, t2/tp 
13 tit 2, tp/t 2 
14 t2 /pt 
15 pt/t 2 

a If t is an internal orbital index, the bra/ket 
label pair refers to the internal orbital indices 
of the matrix element. The case of externals is 
similar to that of internals 

determinant-based evaluations is that arbitrary spin coupling schemes can be used 
in the CSF set, as mentioned in Sect. 2.2. The speed for methods based on the group 
theories can be faster than that for the determinant-based method. However, 
because the size of the expressions is minimized due to the double symbolism, this 
would not become serious. 

The energy expressions are evaluated explicitly for the symbolic//elements. 
The L part of each of these expressions contains the various types/subtypes of 
integrals, which have been classified as shown in Table 2. Because this situation 
is apparently in conflict with the integral-driven processing, the expressions for 
symbolic elements must be reordered according to the classified integrals or the 
types/subtypes of integrals in the backward manner. 

In the integral-driven context, a typed/subtyped symbolic integral correlates 
with the list of various symbolic matrix elements. The indices of the integral must 
be attributed to the bra indices and/or the ket indices of the element, and the 
common indices between the bra and ket must be found. More specifically, to 
determine the loop addressings in the sigma vector construction, the position of 
each of the symbolic integral indices needs to be found in the indices of each 
symbolic matrix element. For this purpose, the positional pattern types (PPTs) 
are defined. There are 16 cases of PPTs as listed in Table 6. The PPT of an active 
orbital index is always zero (because the active orbitals do not appear in the 
symbolic labels of matrix elements but relate directly to the active orbital config- 
uration part), but the other integral indices are attributed to the symbolic labels 
without regard to whether they are internal or external. In the actual sigma vector 
construction, the symbolic internal and external MO indices of integrals are 
replaced by those of integrals stored canonically on a file and the common orbital 
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Table 7. Loop characteristics of (161/~[10) interaction for g.~,x~ (type 8/subtype 3) 

No. Matrix element "'b SLTs ° PPTs d Common patterns b'e 

1 (7'ij,~.l/~]~d,~) 1 1 6 1 0 1 down up 
2 (~gq,,~[/tl~gd,~) 1 2 4 1 0 1 down down 
3 (~g]~,~;,[/]l~ji,~) 1 1 6 2 0 2 up up 
4 (~F]~,.~[/4[~j~,~) 1 2 4 2 0 2 up down 

a For simplicity, the active orbital configurations and the spin couplings are not shown in the 
matrix element. The general form of the element is described as (gsi~,,bl/t 17'~z, c), where the PLTs 
for the internal and external parts are respectively J and F 
b The common orbitals between the bra and ket are identified by the tilde. Hereafter, the 
common orbital index is simply called common 
c Values for the internal and external label parts 
a Values for the integral index quartet of "a i x i" 
e Patterns for the internal and external commons. The definitions of pattern are summarized in 
Table 8 

indices run in the loops whose addressing controls depend both on the PPTs  and 
on the bra/ket  CSF types. I f  the integral indices contain the active MOs or the 
integral has the subaddress, this index part  is responsible for the specification of the 
pair of active orbital configurations C/C' of interacting CSFs, as will be exemplified 
in the next paragraph. The number  of the PPTs to define the loops for TEI  
processings is obviously four. That  is, the PPT quartets are necessary for TEL Note  
that the total number  of unique loop type for TEI  turns out to be 1325. In contrast  
to the TEI  case, the number  of loops for OEI  is only 144 because of the two- 
indexed nature using the PPT doublets. 

We would like to introduce an example to illustrate the structure of symbolic 
expressions and the addressing scheme for the vectors. Table 7 shows the loop 
characteristics of the (161 HI 10) interaction for the g,i, xi (type 8/subtype 3) integral. 
One finds that, although the number  of the S I T  combinations is two ("1 1" and 
"1 2"), the interaction has a total of four loops due to the four PPT quartets 
"6 1 0 1", "4 1 0 1", "6 2 0 2", and "4 2 0 2". This is the reason why not the S I T  but 
the PPT must  be used to define the loop addressings. As indicated by the associated 
matrix elements in Table 7, the internal index i has the two PPT cases of "1" by ij/ij 
and "2" by fi/ji, where the tilde identifies the common orbital ~ ready  referred~ to~ 
simply as the c o m m o n  in the table.~Similarly, a has "4" by ab/b and "6" by ba/b. 
The running areas of c o m m o n s  (j  and b) are restricted by the orbital indices 
having the non-zero PPTs (i and a, respectively). The pattern names for these 
c o m m o n s  are also given in Table 7, and the origin of the names is found in Table 
8. There are a total of five patterns of c o m m o n s  (the o ther three  patterns will be 
introduced in the next su~bsection). The relations ofji/ji and ba/b correspond to the 
u p case, and if/ij and ab/b represent the d o w n  case. Because of the canonical order 
of the TEI  list, only the active orbital index x, that corresponds just to the 
subaddress, varies within a given single record (that is, the a and i are predeter- 
mined in the record). As already noted, the active MO space is handled without 
any symbolism. In this example, x associates directly with the active orbital config- 
uration pair C/C'. Namely, if the integral has the subaddress due to active 
MOs, the list of C/C' is determined not only by the type/subtype of integral but 
also by its subaddress. Note  that  the (non-zero) coupling coefficients have the 
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Table 8. Definitions of commons 

Name Running area(s) a 

up ~: (Max [jbra, kke,] + 1, Ni,t.) 
4: (MaX[bbra, ck¢t] + 1, Next.) 

down ~': (1, Min [Jbra,  kket] - -  1) 
~i: (1, Min [bb~a, Ok,t] -- 1) 

middle ~': (Min [jb~., kk~t] + 1, M a x [ j b r . ,  kket] -- 1) 
4: (Min [bb~, Cket] + 1, Max [bb~a, ck~,] -- 1) 

so lo  ~: (1, Ni,t.) 
¢i: (1, Next.) 

duo  ~': (2, N,,, .) , ] :  (1, Nint. --  1), i > ]  

r/: (2, Next.), b: (1, Next. - -  1), r~ >/; 

"The symbol Max [Pbra, qket] specifies the larger of p from the bra 
and q from the ket, where both p and q are the integral indices 
having non-zero PPTs. If either Pbr, or qkot is missing, the existing 
one is taken. Min[Pbr., qket] works similarly 

dependence both  on the spin coupling pair M/M' and on C/C'. For  the PP-I- 
"6 1 0 1" quartet ,  the internal  and external orbital parts of CSF addressings in the 
loop are given by 

Uxvair[(i -- 1)(i -- 2)/2 + f - -  l ]  + (/~ -- 1)(/~ -- 2)/2 + a -- 1 (16) 

for the bra  or type 16 CSF [see also Eq. (2)] and by 

Nex t . [ ( / -  1)(i - 2)/2 + f -  1] +/~ - 1 (17) 

for the ket or type 10 CSF, and the ranges o f f  and/~ are respectively (1, i - 1) of 
d o w n  and (a + 1, Next.) of up. The remaining parts of CSF addressings are 
specified in the outer  loops due to M/M', C/C', and x (as will be seen in Fig. 1). In 
this way, the contr ibut ions from each gai, xi integral to the sigma vector of the type 
16 and 10 CSF blocks should be correctly calculated in each loop for every state R. 

As described in this subsection, the reordered structure of doubly symbolic 
expressions for a certain integral specified by the type/subtype is characterized by 
the list of CSF  interactions, that  of PPT values which define the loop addressing 
schemes through the corn  m ons ,  that  of active orbital configuration pairs, and that  
of spin coupling pairs, in this order  of the lists. If the integral has the supplementary 
subaddress, the active orbital  configurat ion list depends also on the subaddress. 

The energy expressions may  finally be written on a direct-access type file. Fo r  
the usual cases having some few reference configurations, the size of final expres- 
sions is at mos t  a few megabytes  and all the contents can be read into a central 
memory  before the iterative sigma vector construct ion starts. Thus, I /O operat ions 
about  the expressions would be avoided during the iteration. 

2.5 Integral-driven sigma vector construction 

Before discussing the sigma vector construct ion itself, the variety of loops should be 
considered. Table  9 lists the numbers  of different loops for each of the integrals and 
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Table 9. Number  of loops for integrals and number  of associated 
interactions 

Type Subtype Loops Interactions 

1 1 16 16 
2 1 16 12 
3 1 16 12 
4 1 16 9 

2 32 18 

5 1 16 12 
2 40 12 
3 20 16 
4 44 16 
5 28 16 

6 1 16 12 
2 40 12 
3 20 16 
4 44 16 
5 28 16 

7 1 4 4 
2 4 4 
3 4 4 
4 8 8 
5 8 8 
6 8 4 
7 8 4 
8 8 4 

8 1 16 9 
2 48 12 
3 20 12 
4 28 15 
5 28 15 

9 1 16 9 
2 48 12 
3 20 12 
4 28 15 
5 28 15 

10 1 4 4 
2 4 4 
3 4 4 
4 8 8 
5 8 8 
6 8 4 
7 8 4 
8 8 4 

11 1 4 4 
2 4 4 
3 4 4 
4 4 4 
5 4 4 
6 8 8 
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Table 9. Cont inued 

Type Subtype Loops Interactions 

12 

13 

14 

15 

7 4 4 
8 4 4 
9 8 8 

10 8 8 
11 8 8 
12 8 4 
13 8 4 
14 8 4 

1 4 3 
2 4 3 
3 4 3 
4 8 6 
5 8 6 
6 8 3 
7 8 3 
8 8 3 

1 16 9 
2 24 9 
3 24 9 
4 72 10 
5 17 10 
6 25 10 
7 25 10 
8 37 11 
9 37 11 

1 4 3 
2 4 3 
3 4 3 
4 8 6 
5 8 6 
6 8 3 
7 8 3 
8 8 3 

1 4 4 
2 4 4 
3 4 4 
4 4 4 
5 4 4 
6 8 8 
7 4 4 
8 4 4 
9 8 8 

10 8 8 
11 8 8 
12 8 4 
13 8 4 
14 8 4 
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Table 10. Loop characteristics for g~j,u (type 11/subtype 12) 

Y. Mochizuki et al. 

No. Interaction Matrix element PPTs Common pattern 

1 <6IHI6> <~",kl/?l Tj~) 4 5 6 7 

2 <~e,I/~l ~jk> 4576 

3 (101HI10> (g~,k,a[fi, lWj,,a) 4567 solo 

4 (~e,,al/?l kgjk,a) 4 5 7 6 solo 

5 (151~115) (~ik,,~21/71 ~Yi,,~,) 4 5 6 7 solo 

6 (~e,,~21/~l'e#~,n,> 4 5 7 6 solo 

7 (16IHI16) <~,~,a~lnl ~j~,aa) 4567 duo 

8 (~,,,,t;[/tl gt~k.ag) 4 5 7 6 duo 

the total number of loops is summed up to 1325. In this table, the numbers of 
associated interactions between the CSF types are also included. Each symbolic 
CSF interaction has a multiplicity of addressing patterns due to the variety of the 
PPT quartet, as seen for the g,l, xl case in the last subsection. To introduce the three 
new patterns of c o m m o n s ,  the loops for the gij, kt (type l l /subtype 12) and g~b,~j 
(type 13/subtype 4) integrals are taken as examples. The eight cases for gij, kt loops 
are listed in Table 10, where the four different interactions are involved. This 
example shows two patterns of new c o m m o n s  named solo and duo  (refer to 
Table 8). Without the dependence on integral indices, these c o m m o n s  run over 
the possible space of each of the internal and external MOs in the actual process- 
ings (the external space in this example). The largest number of loop addressing 
patterns is 18 for the (16l/~116) interaction of the gab, U integral, whose character- 
istics are listed in Table 11. A restricted corn m on newly appears in this table. The 
new c o m m o n  is named middle,  where "middle" means that both the bottom and 
top of the index range to be run are restricted by the integral indices. Note that, in 
these two examples of integrals, the active orbital configurations and spin coup- 
lings in the matrix element have the diagonal relations of C --- C' and M = M',  
respectively. Even from the three introduced integrals Ofgai,xi, gij, kl, and gab,U, one 
can imagine the general scheme of addressings for the T and Z and can be seen that 
the variety of TEI  loops is systematic and reasonable although its total number 
is as many as 1325. Attention should be paid again to the fact that each loop charac- 
teristic is uniquely specified not by the c o m m o n s  but by the PPT quartets. 

Consider now the layered loop structure of our sigma vector construction and 
its control flow. Figure 1 schematically illustrates the form of layers. The outermost 
or first layer corresponds to the specification of pq for the canonical TEI list. Then 
the records of non-zero integral lists, which have been prescreened with a certain 
threshold, are read from a file for the given pq. Recall that a single integral record 
contains the various types/subtypes due to {rs} (as shown in Table 3) and each of 
the types/subtypes is correlated with many interactions between the CSF types 
(Table 9). Thus, the second level of layers is concerned with the integral types/ 
subtypes included in a record. When the type/subtype of integrals is fixed, the 
associated symbolic energy expressions are read from a file, where the variations 
due to the subaddresses must properly be taken into account if the integral indices 
contain the active orbital label (again, refer to Table 3). The kernel of loops in the 
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Table 11. Loop characteristics of (161/4116> interaction for g,b,~ (type 13/subtype 
4) 

227 

No. Matrix element PPTs Common patterns" 

1 <~i~,e.lnl wij,~ > 6767  up up 
2 <~i~,c~[Hl ~g,e. > 7667 up up 
3 <7~i~.,~[I~t~,;,j, ab> 4767 up middle 
4 <~,,~lBI ~Yij,.e> 5 6 6 7 up middle 
5 <'e/~,.elnl ~Yi~.be> 4567 up down 
6 ( g~,h~[/~[ ~j,.~> 5467 up down 
7 <g~La, lI~[~j,~h> 6747 middle up 
8 <~,Le~,II~I~Ygj, eo> 7647 middle up 
9 <~,.~I171't%~> 4747 middle middle 

10 <~e~i, abl//I ~i~,,e> 5 6 4 7 middle middle 
11 (~Jii, adn[tZlij, bg) 4547 middle down 
12 < ~'~i,,~l/~l ~Y~j,.e> 5 4 4 7 middle down 
13 <~L~.IH[ ~ji,~b> 6745 down up 
14 <'l',i,e~lrq[ g~ji, a,> 7 6 4 5 down up 
15 <g/~i,,,eiItl~ji.~> 4745 down middle 
16 <g/zi,~b[t~lWji,,.~ > 5645 down middle 
17 < ~,~..~l,ql ~ii,~> 4 54 5 down down 
18 < ~,~ [ /~ l  ~,.e> 5445 down down 

a Patterns for the internal and external commons 

present integral-driven sigma vector construction starts at this point. The expres- 
sions first specify the interactions of CSF types and then do the PPT list. Thus, the 
third and fourth layers correspond respectively to the CSF interactions and the 
PPT quartets, both of which correlate with the internal and external orbital parts of 
CSF addressings through the c o m m o n s  having five patterns. The inner multiloop 
can be in the order of the state number R, rs, the active orbital configuration pair 
C/C',  the spin coupling pair M / M ' ,  and the c o m m o n s .  There are two points to be 
recalled. First, the running range of c o m m o n s  is dependent generally on the pq 
and rs indices that are pointing to the prescreened integral entries. Second, the loop 
over M / M '  is driven only by the non-zero values of coupling coefficients. As a 
result, arithmetic operations due to the non-contributive integrals and coupling 
coefficients are naturally avoided. This feature is notably favorable to executions 
on the scalar machines such as WSs. The loop over c o m m o n s  is currently placed 
to be innermost and can be executed with the vectorization on the platform having 
the vector CPU. In the actual implementation, if one wishes to elongate the vector 
length for efficiency, one can fuse the loops of c o m m o n s ,  M/M', etc. or can alter 
the loop order, depending upon each of the integral types/subtypes. However, such 
a discussion on the tunings is somewhat out of the purpose of the present paper. In 
any case, the bra and ket CSF addresses are calculated, and according to them the 
integral contributions are taken into account through the pair of vector-addition 
operations corresponding to Eqs. (8) and (9). 

As just noted in the above paragraph, the CI formulation proposed presently 
incorporates the sparsity due to the integral prescreening into the sigma vector 
construction. In the result, the meaningless operations are bypassed. The use of the 
localized MO sets [15] can increase the efficiency of prescreenings. A more drastic 
way to save the C P U time may be a controlled neglect of certain types/subtypes of 
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Loop over pq 
Read prescreened integrals due to {rs} 
Loop over integral types/subtypes 

Read associated energy expressions 
Loop over CSF interactions 

Loop over PPT quartets 
Loop over R 

Loop over rs 
Loop over C/C' 

Loop over M/M' 
Loop over commons 

Bra-address ~- f(CSF-type, PPT, {p, q, r, s}, C, commons, M) 
Ket-address ~ f'(CSF-type, PPT, {p, q, r, s}, C', commons, M') 
Z(Bra-address, R) ~ Z(Bra-address, R) + 

O(rs)*Q(rs, C/C', M/M')*T(Ket-address, R) 
Z(Ket-address, R) ~ Z(ket-address, R) + 

O(rs)*Q(rs, C/C', M/M')*T(Bra-address, R) 
Loop end 

Loop end 
Loop end 

Loop end 
Loop end 

Loop end 
Loop end 

Loop end 
Loop end 

Fig. 1. Schematic loop layers for the integral-driven sigma vector construction. Addresses of the bra 
and ket are determined through the respective "function" of the variables listed in the figure. Two 
vector-additions are carried out according to the calculated addresses. O and Q respectively denote the 
arrays of integrals and coupling coefficients for the given pq 

integrals (regardless of their actual existence on a file), as discussed by Siegbahn for 
the MRSCI  case [16]. Note  that  it may also be possible to neglect certain costly 
CSF interactions. These techniques can be effective in CI calculations for large 
molecular systems. 

The C P U  cost for the OEI  processings is expected to be very cheap. The 
structure of loops is essentially the same (except for the missing pq) as Fig. 1 for TEI  
but is much simpler because of the two-indexed nature. Recall that  the total 
number of loops is only 144. The contributions from OEIs may be accumulated to 
the sigma vectors after the TEI  processings are finished. 

Once the sigma vector set Z is constructed, the energies are evaluated and 
the convergence is checked [17, 18]. If the procedure has not yet converged, the 
Z construction is iterated with the new T updated by proper corrections. After 
the convergence is found, the density matrix generation by using the symbolic 
expressions for OEIs  is an easy task. The size-consistency would be a crucial 
requirement even for medium-sized molecules [19]. The size-consistently modified 
CIs like the coupled pair functional (CPF) family 1-20, 21] can also be calculated 
from Z, and the process is iterated similarly until convergence. 
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2.6 Parallel applicability 

Finally, from a viewpoint of the recent parallel computing movement (for example, 
see Ref. [22]), the parallel applicability of our CI formulation is discussed. In fact, 
the parallelism has been one of the hot topics in the 1990's MO calculations. The 
special issue of Theor. Chim. Acta, Vol. 84, in 1993, has nicely compiled the fruitful 
results of extensive efforts [23]. The parallelization of the present integral-driven 
sigma vector construction can be straightforwardly done by the outermost pq or, 
more simply, only p in Fig. 1. Note here that the CI parallelization reported by 
Schiller et al. in Ref. [23] was done not in the integral-driven context but in the 
"segmental-vector-driven" context. 

As in the case of parallelized self-consistent-field (SCF) calculations in which 
the Fock matrix elements are constructed in parallel (refer to Ref. [23]), the 
parallelized sigma vector construction can obey the so-called client/server para- 
digm with the message-passing tools such as the TCGMSG [24] and PVM [-25], 
where each node (or parallel processor element) has the local memory (LM). The 
integral file may be presegmented or properly replicated among the nodes before 
the iteration procedure starts. The symbolic expressions whose size is minimized 
may also be replicated. In a certain iteration, first the T should be broadcast by the 
client to the servers that are used in parallel, and the working Z area should be 
cleared by each server process. Second, the client assigns the "partial" index list of 
integrals {pq} or {p} to the servers. Then, each of the servers constructs "partially" 
the Z elements on the LM, according to the respectively assigned list. After the 
parallel processing is completed, the client sums up the "partial" elements of servers 
to reproduce the "full" Z as 

Z("full")client = E Z("partial") . . . . . .  (18) 
s e r v e r  

and the CI energies are evaluated by the client. The above scheme of parallelization 
can lead to an efficient parallel acceleration, because the processings in the server 
are expected to be complicated and time-consuming due to the many layers of 
loops as shown in Fig. 1 and, furthermore, any intercommunication between 
servers is unnecessary. Each server node executes asynchronously the different 
loops of integral processings [Eqs. (8) and (9)]. Thus, the present CI parallelism is 
characterized by the "multi-instruction multi-data" (MIMD) [22]. 

Preliminary tests of integral-driven parallel calculations on the clustered WSs 
will be described in Appendix A. The acceleration efficiency shown in the appendix 
indicates that the integral-driven parallelism indeed is a promising recipe. We 
would expect that the parallel CI methodology makes the "currently inaccessible 
problems" of large molecules having more than a few hundred correlating MOs 
accessible on the forthcoming supercomputers of the vector-parallel type, where 
the "on-the-fly" integral usage [26] (which will be outlined in Appendix B) is 
probably incorporated. 

3 Conclusion 

In this paper, a new formulation of the integral-driven direct CI using the internally 
and externally symbolic energy expressions was proposed. Multi-indexed quantit- 
ies like molecular integrals are systematically classified. The resulting structure of 



230 Y. Mochizuki et al. 

expressions is fairly complicated. The number of unique loops for two-electron 
integral processings in the sigma vector construction is as many as 1325. The 
present formulation is oriented toward the investigations of large molecular sys- 
tems by using flexibly defined CI wavefunctions. The parallel recipe is straight- 
forward. Works  of the system implementation are in progress. 
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Appendix A 

The potential of the integral-driven parallel sigma vector construction is checked 
on the ethernet-clustered WSs. For  this purpose, we wrote a prototype of the 
closed-shell single-reference SDCI program in F O R T R A N  (about 10000 lines), 
where no special code tuning was made. Note that the loop layer of C/C' is 
apparently unnecessary. In this prototype code, the number of unique TEI  loop 
types to be coded is reduced to 355, because there are only five symbolic excited 
CSF types (4 and 13-16) and four integral types (11-15). All the energy expressions 
are installed in the program. The parallelization is done in the simplest round- 
robin fashion 123] and according to only p, which specifies both the internal (type 
11 integrals) and external (type 12-15) indices at the first position of the quartet. 
The PVM message-passing 1,25] is used for the parallel control. Before the iter- 
ation, the TEI  list is broadcast  by the client and is kept in the LM associated with 
each server node. 

The test molecule was the simplest amino acid, glycine ( H 2 N - C H 2 - C O O H ) .  
A standard double-zeta (DZ) basis set given by van Duijneveldt 1-27] was used, 
where the contractions are (9s5p)/1,4s2p] for the C, N, and O atoms and (5s)/[2s] 
for the H atom. The molecular coordinates were taken from the experimental data 
1-28]. The total number  of AOs was 60 and the SCF energy was - 282.67881 a.u. 
The numbers of internal and external MOs were respectively 15 and 40 and the 
expansion length of CI  was 180901. The convergence was obtained after seven 
iterations of the sigma vector construction and the resulting correlation energy 
was - 0.45633 a.u. 

Table 12. Timings Is] for glycine SDCI calculations on a homogeneously clustered workstations 

No. of nodes 1 2 3 4 5 6 7 8 

CPU time 6288 
Elapsed time 6351 3329 2480 1850 1550 1408 1387 1130 
Acceleration b 1.89 2.54 3.40 4.06 4.47 4.53 5.56 

CPU time sum for Z 6177 
Elapsed time for Z 6240 3095 2331 1701 1392 1248 1217 945 
Acceleration 2.00 2.65 3.63 4.44 4.95 5.08 6.54 

"Each node is NEC EWS-4800 (360AD) system, whose MIPS and SPECfp92 values are respectively 
149 and 94 
b Defined as the ratio of the CPU time for single-node execution to the elapsed time for parallel 
execution 
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Table 12 shows the effect of paralMization in homogeneously clustered WSs, 
where this platform was dedicated only to the test jobs (or in dedicated usage). The 
acceleration for the sigma vector construction was 2.00 (1.89) for two nodes, 3.63 
(3.40) for four, 4.95 (4.47) for six, and 6.54 (5.56) for eight, where the value in 
parentheses is for the total (or client) job. We also checked the case of heterogen- 
eously clustered platforms. For five nodes in which there was a speed difference of 
more than two and was in non-dedicated usage, a parallel acceleration of about 
four relative to the non-parallel execution on the slowest node was observed for the 
total job. The overall parallel efficiency is satisfactory enough to demonstrate 
the potential of the integral-driven CI parallelism, especially when considering that 
the prototype program code was not optimum and its parallel control was 
somewhat naive. 

Appendix B 

In this paper, it has been postulated that the prescreened TEI list can be kept on 
a file. However, the "on-the-fly" integral usage should be desired for huge scale 
problems having more than a few hundred correlating orbitals. The "on-the-fly" 
method was pioneered by Alml6f in the SCF calculation [26]. The "on-the-fly" 
SCF algorithm dramatically broke the storage and retrieval bottleneck of AO 
integrals at the cost of repeated integral generations, and the parallel SCF calcu- 
lations [23] have adopted this algorithm. Note that Taylor analyzed generally the 
"on-the-fly" way of TEI (MO-based integral) generation for the post-SCF or 
correlated calculations [29]. This appendix shows that the "on-the-fly" algorithm 
is naturally incorporated into our integral-driven sigma vector construction 
scheme with the parallelism. 

Consider first the non-parallel or single-node case. Figure 2 schematically 
illustrates the loop structure for "on-the-fly" integral processing. The groupings 
seen in the figure may be adjusted according to the available memory size of the 
node. The outermost loop is driven by the grouped q, denoted qg. The "not-full" 
AO integral generation is carried out under the control of/~, v S. 2, and a. From the 
given chunk of AO integrals, the 2/4 partial transformation 

g. ...... =~ezre~sg..v.,~. (19) 
ha 

is performed, where the e is the AO-MO coefficients matrix. When the loop over vg 
is finished, the list ofg,,q,,rs is available. The rest of the transformation is for p. Once 
the proper prescreening is done, the inner process is virtually the same as shown in 
Fig. 1, except that the completely transformed integral 9pq, rs is replaced by the 
product of the AO-MO coefficient and the 3/4 transformed integral c,pguq, rs. Then 
the loop control goes to the next #g. The cost to be paid is manifestly that "full" AO 
integral generation is repeated as many times as there are q groups. Furthermore, 
the CPU time per one "full' calculation can now be increased fourfold because the 
eightfold equivalent permutations of AO integral indices are degraded by the fixing 
of/~ and v groupings to only twofold permutations. 

Parallelization of the integral-driven/"on-the-fly" sigma vector construction is 
obvious. The qg that drives the outermost loop in Fig. 2 is taken as the parallel 
parameter. Good parallel efficiency would be expected. 
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Loop over qg 
Loop over pg 

Loop over vg 
Loop over 2a 

Calculate AO integrals of g,~g. a~ 
Loop end 
Loop over rs 

Perform 2/4 transformation of g,~g..~ = ~ z ~ c a . c ~ g , . ~ .  ~ 

Loop end 
Loop over v e vg 

Perform accumulation of g ~ , , ~  ~ g~q~,rs + cvq~gj, gv, rs 

Loop end 
Loop end 
Loop over q e qg 

Loop over/t e p~ 
Loop over p 

Calculate contributions to sigma vectors from Cltp~pq, r s 

Loop end 
Loop end 

Loop end 
Loop end 

Loop end 

Fig. 2. Schematic loop layers for "on-the-fly" integral usage. Inside from the p loop, processing is 
virtually the same as that indicated in Fig. 1 (needless to say, integral reading is unnecessary) 
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